

Declaration of Performance DoP No. 1219-CPR-0087 (SSW)

1. Product Type:

Anchor Sissy Stud

2. Identification:

Product Code	Length L	Diameter	Fixture Thickness
	(mm)	(mm)	(mm)
SSW07LLL	3 last digits of	7.5	L-55
SSW10LLL	product code	10.5	L-60
SSW12LLL		12.5	L70
SSW16LLL		16.5	L-110

3. Intended use:

Generic type:	Concrete Screw Anchor
Base material:	Concrete C20/25-C50/60 (EN206-1) Cracked and Non-cracked
Material:	Carbon Steel, silver ruspert coated and zinc plating
Durability:	Internal Dry conditions
Loading:	Static, Quasi-Static
Fire resistance	F120
Assumed working life:	50 years

4. Manufacturer: JOKER Industrial Co. Ltd.

No. 10 Changbin East 7rd., Changbin Industrial District,

Hsien His. Hsiang. Changua Hsien Taiwan.

5. Authorized representative:

Not applicable

6. System of assessment of performance:

1

7. Harmonized Standard:

Not applicable

8. European Technical Assessment:

Instituo Eduaro Torroja de ciencias de la (IETcc) issued ETA-14/0374 (18.02.2019) On the basis of ETAG001, parts 1, 3, TR020 -Option 1

The notified body 1219-CPR performed certification of factory production control on the basis of:

- Initial inspection of the manufacturing plant and of factory production control
- Continuous surveillance assessment and evaluation of factory production control
- 9. Declared performances:

Table B1: Installation parameters

Instal	llation parameters		Performance				
			SS 7.5	SS 10.5	SS 12.5	SS 16.5	
d_0	Nominal diameter of drill bit:	[mm]	6	8	10	14	
d_f	Diameter of clearance hole in fixture:	[mm]	9	12	14	18	
ds	Outer diameter of the thread	[mm]	7.5	10.5	12.5	16.5	
L _{min}	Total langth of the ancher	[mm]	60	65	75	115	
L _{max}	Total length of the anchor	[mm]	400	400	400	400	
h _{min}	Minimum thickness of concrete member:	[mm]	100	100	105	175	
h ₁	Depth of drilled hole:	[mm]	65	70	85	130	
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	55	60	70	110	
h _{ef}	Effective anchorage depth:	[mm]	42	45	52	86	
Tins	Installation torque	[Nm]	20	50	80	120	
t _{fix}	Thickness of fixture	[mm]	L-55	L-60	L-7.0	L-110	
S _{min}	Minimum allowable spacing:	[mm]	45	50	60	100	
C _{min}	Minimum allowable edge distance:	[mm]	45	50	60	100	

Table C1: Characteristic values to tension loads of design method A

	istic values of resistance to tension lo	ads	Performance				
of design	method A		SS 7.5	SS 10.5	SS 12.5	SS 16.5	
Tension lo	oads: steel failure		ologoment domine constante de la constante de	· Doise construction de la constantion			
N _{Rk.s} Ter	nsion steel characteristic resistance:	[kN]	18.7	32.7	51.2	115.9	
y _{Ms} Par	rtial safety factor:*)	[-]	1.5	1.5	1.5	1.5	
Tension lo	pads: pull-out failure in concrete						
N _{Rk,p, ucr}	Tension characteristic resistance in C20/25 uncracked concrete:	[kN]	9	12	20	40	
Ψc,ucr	C30/37	[-]	1,22	1,09	1,06	1,04	
Ψ _{c,ucr}	C40/45	[-]	1,41	1,07	1,10	1,06	
Ψ _{c,ucr}	C50/60	[-]	1,58	1,22	1,13	1,08	
$N_{Rk,p,cr}$	Tension characteristic resistance in C20/25 cracked concrete:	[kN]	6	9	12	30	
Ψc,cr	C30/37	[-]	1,22	1,09	1,06	1,04	
Ψ _{c,cr}	C40/45	[-]	1,41	1,07	1,10	1,06	
Ψc,cr	C50/60	[-]	1,58	1,22	1,13	1,08	
Yinst	Installation safety factor	[-]	1.2	1.2	1.2	1	
Tension l	oads: concrete cone and splitting failu	re					
h _{ef} Effe	ective embedment depth:	[mm]	42	45	52	86	
y _{ins} Ins	tallation safety factor: *)	[-]	1.2	1.2	1.2	1	
s _{cr,N} Cri	tical spacing:	[mm]	126	135	156	258	
c _{cr,N} Cri	tical edge distance:	[mm]	63	67	78	129	
s _{cr,sp} Cri	tica spacing (splitting):	[mm]	126	135	177	292	
c _{cr,sp} Cri	tical edge distance (splitting):	[mm]	63	67	88	146	

Table C2: Displacements under tension loads for Sissy Stud

Disp	lacements under tension loads in uncrack	ed	Performance				
concrete			SS 7.5	SS 10.5	SS 12.5	SS 16.5	
N	Service tension load in uncracked concrete C20/25 to C50/60:	[kN]	3.6	4.8	9.5	19.0	
δ_{N0}	Short term displacement under tension loads:	[mm]	0.4	0.4	0.4	0.9	
ō _{N∞}	Long term displacement under tension loads:	[mm]	1.0	1.1	1.4	1.4	
Disp	lacements under tension loads in cracked		Performance				
conc	rete		SS 7.5	SS 10.5	SS 12.5	SS 16.5	
2	Service tension load in cracked concrete C20/25 to C50/60:	[kN]	2.4	3.6	5.7	11.9	
δ_{N0}	Short term displacement under tension loads:	[mm]	0.6	0.7	0.5	0.6	
δ _{N∞}	Long term displacement under tension loads:	[mm]	1.4	1.2	1.4	1.2	

Table C3: Characteristic values to shear loads of design method A

Chara	acteristic values of resistance to shear loa	ads of		Perfo	rmance	
desig	design method A		SS 7.5	SS 10.5	SS 12.5	SS 16.5
Shear	loads: steel failure without lever arm					
V _{Rk,s}	Shear steel characteristic resistance:	[kN]	7.5	16.3	35.6	57.9
γMs	Partial safety factor: *)	[-]	1.25	1.25	1.25	1.25
Shear	loads: steel failure with lever arm					
M ⁰ Rk,s	Characteristic bending moment:	[Nm]	15.2	35.3	69.3	235.
γMs	Partial safety factor: *)	[-]	1.25	1.25	1.25	1.25
Shear	r loads: concrete pryout failure					
K	K factor:	[-]	1	1	1	2
γ̃inst	Installation safety factor: *)	[-]	1	1	1	1
Shear	r loads: concrete edge failure					
lf	Effective anchorage depth under shear loads:	[mm]	42	45	52	86
d _{nom}	Outside anchor diameter:	[mm]	7.5	10.5	12.5	16.5
γinst	Installation safety factor: *)	[-]	1	1	1	1

^{*)} In absence of other national regulations

Table C4: Displacements under shear loads for Sissy Stud

Displacements under shear loads						
			SS 7.5	SS 10.5	SS 12.5	SS 16.5
V	Service shear load in cracked and uncracked concrete C20/25 to C50/60:	[kN]	3.0	6.5	12.2	27.6
δνο	Short term displacement under shear loads:	[mm]	1.3	1.4	1.8	2.3
δγ∞	Long term displacement under shear loads:	[mm]	2.0	2.1	2.7	3.5

Table D1: Characteristic values to fire resistance

Fire res	sistance duration = 30 minutes		SS 7.5	SS 10.5	SS 12.5	SS 16.5
Ten:	sion loads, steel failure	•				
N _{Rk,s,fi,30}	Characteristic resistance	[kN]	0.23	0.61	1.28	2.90
Pull	-out failure					
N _{Rk,p,fi,30}	Character, resistance in concrete C20/25 to C50/60	[kN]	1.50	2.25	3.00	7.50
Con	crete cone failure **)	***************************************				
N _{Rk,c,fi,30}	Character, resistance in concrete C20/25 to C50/60	[kN]	2.06	2.45	3.51	12.35
Shea	ar loads steel failure without lever arm					
V _{Rk,s,fi,30}	Characteristic resistance	[kN]	0.23	0.61	1.28	2.90
Shea	ar loads, steel failure with lever arm	<u> </u>				
M _{Rk,s,fi,60}	Characteristic bending resistance	[Nm]	0.19	0.66	1.73	5.90

Fire res	sistance duration = 60 minutes		SS 7.5	SS 10.5	SS 12.5	SS 16.5
Tens	sion loads, steel failure				***************************************	
N _{Rk,s,fi,60}	Characteristic resistance	[kN]	0.21	0.53	0.96	2.17
Pull	-out failure	A CONTRACTOR OF THE PROPERTY O			4	
N _{Rk,p,fi,60}	Character, resistance in concrete C20/25 to C50/60	[kN]	1.50	2.25	3.00	7.50
Con	crete cone failure **)					
N _{Rk,c,fi,60}	Character, resistance in concrete C20/25 to C50/60	[kN]	2.06	2.45	3.51	12.35
Shea	r loads, steel failure without lever arm					
$V_{\rm Rk,s,fi,60}$	Characteristic resistance	[kN]	0.21	0.53	0.96	2.17
Shea	r loads, steel failure with lever arm				*	
M _{Rk,s,fi,60}	Characteristic bending resistance	[Nm]	0.17	0.57	1.30	4.42

Fire res	sistance duration = 90 minutes		SS 7.5	SS 10.5	SS 12.5	SS 16.5
Ten	sion loads, steel failure					
N _{Rk,s,fi,90}	Characteristic resistance	[kN]	0.16	0.41	0.83	1.88
Pull	-out failure					
N _{Rk,p,fi,90}	Character, resistance in concrete C20/25 to C50/60	[kN]	1.50	2.25	3.00	7.50
Con	crete cone failure **)	······································				
NRk,c,fi,90	Character, resistance in concrete C20/25 to C50/60	[kN]	2.06	2.45	3.51	12.35
Shea	ar loads, steel failure without lever arm	***************************************			•	
V _{Rk,s,fi,90}	Characteristic resistance	[kN]	0.16	0.41	0.83	1.88
Shea	ar loads, steel failure with lever arm					
M _{Rk,s,fi,90}	Characteristic bending resistance	[Nm]	0.13	0.44	1.13	3.83

Fire res	istance duration = 120 minutes		SS 7.5	SS 10.5	SS 12.5	SS 16.5
Tens	sion loads, steel failure					
N _{Rk,s,fi,120}	Characteristic resistance	[kN]	0.12	0.33	0.64	1.45
Pull-	out failure					
N _{Rk,p,fi,120}	Character. resistance in concrete C20/25 to C50/60	[kN]	1,20	1.80	2.40	6.00
Con	crete cone failure **)					
N _{Rk,c,fi,120}	Character. resistance in concrete C20/25 to C50/60	[kN]	1.65	1.96	2.81	9.88
Shea	r loads, steel failure without lever arm					
V _{Rk,s,fi,120}	Characteristic resistance	[kN]	0.12	0.33	0.64	1.45
Shea	r loads, steel failure with lever arm					
M _{Rk,s,fi,120}	Characteristic bending resistance	[Nm]	0.10	0.35	0.87	2.95

Spacii	Spacing and edge distances		SS 7.5	SS 10.5	SS 12.5	SS 16.5
S _{cr,N}	Spacing	[mm]	168	180	208	344
S _{min}	Minimum spacing	[mm]	45	50	60	100
C _{cr,N}	Edge distance	[mm]	84	90	104	172
C _{min}	Minimum edge distance (one side fire)	[mm]	84	90	104	172
C _{min}	Minimum edge distance (two sides fire)	[mm]	300	300	300	300
γ̃Msp	Partial safety factor ^{*)}	[-]	1.0	1.0	1.0	1.0

In absence of other national regulations

^{*)} In absence of other national regulations

**) As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Concrete pry-out failure	SS 7.5	SS 10.5	SS 12.5	SS 16.5
K factor []	1	1	1	2
In Eq. (5.6) of EN 1992-4:2018, these values of k factor and the relevant values of N _{Rk,c,fi} given in the above tables have to be considered in the design.				

Concrete edge failure

The characteristic resistance $V^0_{RK,e,f}$ in C20/25 to C50/60 concrete is determined by: $V^0_{RK,e,f} = 0,25 \times V^0_{RK,e}$ ($\leq R90$) and $V^0_{RK,e,f} = 0,20 \times V^0_{RK,e}$ (R120) With $V^0_{RK,e}$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to EN 1992-4:2018.

10. Declared performances:

The performance of the product identified in point 1 and 2 is in conformity with the declared performance in point 9.

This DoP is issued under sole responsibly of the manufacturer identified in point 4.

Signed on behalf of the manufacturer by:

Ryan Huang, Product Manager

JOKER Industrial Co., LTD

